95 research outputs found

    LINEAR APPROXIMATION OF OPEN-CHANNEL FLOW ROUTING WITH BACKWATER EFFECT

    Get PDF
    International audienceThis paper proposes a new model for linear flow routing in open-channels. The proposed model, called LBLR for Linear Backwater Lag and Route, is a first order with delay model that explicitly takes into account two parameters which are usually neglected: 1) the downstream boundary condition and 2) the nonuniform flow conditions, both of which are shown to have a strong influence on the flow dynamics. The model parameters are obtained analytically from the pool characteristics (geometry, friction, discharge and downstream boundary condition). A frequency domain approach is used to compute the frequency response of the linearized Saint-Venant equations. This model is then approximated by a first order plus delay model using the moment matching method. The proposed model is shown to perform better than existing models when the flow is affected by backwater and/or by different downstream boundary conditions from the one corresponding to uniform flow

    Robust Flow Control of Single Input Multiple Outputs Regulated Rivers

    Full text link

    Stability and performance analysis of classical decentralized control of irrigation canals

    Get PDF
    Irrigation canals have a series structure which is generally used to design multivariable controllers based on the aggregation of decentralized monovariable controllers. SISO controllers are designed for each canal pool, assuming that the interactions will not destabilize the overall system. It is shown that, when the canal pools are controlled using the discharge at one boundary, the multivariable decentralized control structure is stable if and only if the SISO controllers are stable. The performance of the multivariable system is also investigated, and it is shown that the interactions decrease the overall performance of the controlled system. This loss of performance can be reduced by using a feedforward controller. Experimental results show the effectiveness of the method

    Static and dynamic data reconciliation for an irrigation canal

    Get PDF
    International audienceThis paper deals with the problem of fault detection and isolation in irrigation canals. We develop a method which combines static and dynamic data reconciliation for the validation of measurements, detection and isolation of sensors and actuator faults and reconstruction of missing data. Static data reconciliation uses static models at a regulation gate to validate measurements and detect sensor and actuator faults. It also enabled us to detect a drift in the stage discharge rating curve. The dynamic data reconciliation uses additional measurements and a dynamic model of the canal in order to validate measurements and detect faults and withdrawals. The combination of the two methods allowed us to distinguish between withdrawals and faults. Both methods are evaluated on measurements from a real irrigation canal located in the South of France

    Hydraulic Modeling of a Mixed Water Level Control Hydromechanical Gate

    Get PDF
    This article describes the hydraulic behavior of a mixed water level control hydromechanical gate present in several irrigation canals. The automatic gate is termed "mixed" because it can hold either the upstream water level or the downstream water level constant according to the flow conditions. Such a complex behavior is obtained through a series of side tanks linked by orifices and weirs. No energy supply is needed in this regulation process. The mixed flow gate is analyzed and a mathematical model for its function is proposed, assuming the system is at equilibrium. The goal of the modeling was to better understand the mixed gate function and to help adjust their characteristics in the field or in a design process. The proposed model is analyzed and evaluated using real data collected on a canal in the south of France. The results show the ability of the model to reproduce the function of this complex hydromechanical system. The mathematical model is also implemented in software dedicated to hydraulic modeling of irrigation canals, which can be used to design and evaluate management strategies

    Conceptual quality modelling and integrated control of combined urban drainage system

    Get PDF
    This paper presents the first results of conceptual quality modelling approach oriented to the integrated real-time control (RTC) strategy for urban drainage networks (UDN) and wastewater treatment plants (WWTP) developed in the European project LIFE EFFIDRAIN (Efficient Integrated Real-time Control in Urban Drainage and Wastewater Treatment Plants for Environmental Protection). Model predictive control (MPC) has been selected as a proper RTC to minimize the polluting discharge in case of raining events. The simulator SWMM5 was modified to integrate a lumped conceptual model for total suspended solids (TSS) called SWMM-TSS, which has been used as virtual reality for calibration and validation of the proposed modelling approaches in Perinot network, a real case study in Bordeaux.Peer ReviewedPostprint (author's final draft

    Implementation of a Differential Flatness Based Controller on an Open Channel Using a SCADA System

    Get PDF
    International audienceWith a population of more than 6 billion people, food production from agriculture must be raised to meet increasing demand. While irrigated agriculture provides 40% of the total food production, it represents 80% of the freshwater consumption worldwide. In summer and drought conditions, efficient management of scarce water resources becomes crucial. The majority of irrigation canals are managed manually, however, with large water losses leading to low water efficiency. This article focuses on the development of algorithms that could contribute to more efficient management of irrigation canals that convey water from a source, generally a dam or reservoir located upstream, to water users. We also describe the implementation of an algorithm for real-time irrigation operation using a supervision, control, and data acquisition (SCADA) system with an automatic centralized controller. Irrigation canals can be viewed and modeled as delay systems since it takes time for the water released at the upstream end to reach the user located downstream. We thus present an open-loop controller that can deliver water at a given location at a specified time. The development of this controller requires a method for inverting the equations that describe the dynamics of the canal in order to parameterize the controlled input as a function of the desired output. The Saint-Venant equations [1] are widely used to describe water discharge in a canal. Since these equations are not easy to invert, we consider a simplified model, called the Hayami model. We then use differential flatness to invert the dynamics of the system and to design an open-loop controller

    Faster and safer:Research priorities in water and health

    Get PDF
    The United Nations’ Sustainable Development Goals initiated in 2016 reiterated the need for safe water and healthy lives across the globe. The tenth anniversary meeting of the International Water and Health Seminar in 2018 brought together experts, students, and practitioners, setting the stage for development of an inclusive and evidence-based research agenda on water and health. Data collection relied on a nominal group technique gathering perceived research priorities as well as underlying drivers and adaptation needs. Under a common driver of public health protection, primary research priorities included the socioeconomy of water, risk assessment and management, and improved monitoring methods and intelligence. Adaptations stemming from these drivers included translating existing knowledge to providing safe and timely services to support the diversity of human water needs. Our findings present a comprehensive agenda of topics at the forefront of water and health research. This information can frame and inform collective efforts of water and health researchers over the coming decades, contributing to improved water services, public health, and socioeconomic outcomes

    Real-time control-oriented quality modelling in combined urban drainage networks

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Urban drainage networks (UDN) carry urban wastewater to wastewater treatment plants (WWTP) in order to regenerate it before releasing it to the environment. Combined UDN (CUDN) carry both rain and wastewater together, which can overload the UDN and produce combined sewer overflows (CSO) that pollute the environment. Management of CUDN is receiving increasing attention from both researchers and water managers, in order to meet the high quality standards required for water and environment according to EU Water Framework Directive. Due to the complex dynamics of water quality, integrated control of CUDN and WWTP considering both flows and quality of the conveyed wastewater is a difficult problem. In order to design a real-time control (RTC) taking into account hydraulic and quality variables, the use of conceptual quality models is considered as a suitable option. This paper mainly presents a simplified conceptual quality modelling approach to represent the dynamics of suspended solid in sewers of CUDN oriented to real-time control. A sewer simulator implemented in SWMM (Storm Water Management Model) integrated with a lumped conceptual model for total suspended solid (TSS) is used for calibration and validation. A real example of Perinot sewer network is used as a case study. Discussions about RTC implementation in CUDN are also provided in this paper, where Model Predictive Control (MPC) is proposed as the suitable method to control the integrated water and quality models in CUDN as future motivation.Peer ReviewedPostprint (author's final draft

    Monitoring of SARS-CoV-2 in wastewater: what normalisation for improved understanding of epidemic trends?

    Get PDF
    SARS-CoV-2 RNA quantification in wastewater has emerged as a relevant additional means to monitor the COVID-19 pandemic. However, the concentration can be affected by black water dilution factors or movements of the sewer shed population, leading to misinterpretation of measurement results. The aim of this study was to evaluate the performance of different indicators to accurately interpret SARS-CoV-2 in wastewater. Weekly/bi-weekly measurements from three cities in France were analysed from February to September 2021. The concentrations of SARS-CoV-2 gene copies were normalised to the faecal-contributing population using simple sewage component indicators. To reduce the measurement error, a composite index was created to combine simultaneously the information carried by the simple indicators. The results showed that the regularity (mean absolute difference between observation and the smoothed curve) of the simple indicators substantially varied across sampling points. The composite index consistently showed better regularity compared to the other indicators and was associated to the lowest variation in correlation coefficient across sampling points. These findings suggest the recommendation for the use of a composite index in wastewater-based epidemiology to compensate for variability in measurement results
    • …
    corecore